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1. INTRODUCTION 
The X-FEM and the FEM are versatile tools for the 

simplification of the modeling of discontinuous 

phenomena in material science. In conventional Finite 

Element framework, it is difficult to model the crack 

growth due to the topology alteration of the mesh. During 

the modeling of evolving discontinuities the mesh must 

be regenerated at each step and the crack tips must be 

placed accurately to allow the material separation along 

the crack surface [1]. In X-FEM continuous refinement 

of mesh to conform the discontinuities is not required. 

The internal boundaries in the discrete X-FEM model is 

accommodate by the concept partition of unity [2, 3] and 

based on a standard Galerkin procedure. This was 

proposed by Belytschko and Black [4]. They enriched 

the finite element approximation with additional basis 

functions to introduce a discontinuous displacement field 

along with the crack surface in X-FEM. The asymptotic 

near tip field and a Heaviside function H(x) was 

introduced by Dolbow et al. [5,6]and Moes et al. [7] to 

improve the technique and Sukumar et al.[8] extended 

the concept for three dimensional static crack modeling. 

The arbitrary discontinuities and discontinuous 

derivatives in finite elements were combined with 

modeling functions by Belytschko et al. [9].In contrast, 

the accuracy of the element enrichment schemes of 

Benzley [10] based on a partition of unity, is 

uninfluenced by the element size for a large range. 

Moreover, the technique becomes weak as the transition 

elements are required for crack tip elements and the 

decrease of element size near the crack tip elements. The 

only drawback of this method is the need for a variable 

number of degrees of freedom per node. 

The X-FEM unified with level set method (LSM) for 

modeling the entire fracture such as the geometry and the 

displacement field of crack and other engineering 

problems in the complex domains can easily be 

constructed where FEM faces difficulties to produce 

accurate solution. 

 

2. GENERAL REVIEW 
2.1 Multiple cracks and crack nucleation  
Daux et al. [11] presented a methodology to model the 

voids and complex geometries like cracks with multiple 

branches by adapting X-FEM. This study facilitates to 

model the cracks associated with holes in a system.  For 

multiple cracks evolution Budyn et al. [12] studied a 

modeling method with the X-FEM. Mariano and 

Stazi[13] applied the X-FEM to a multi-field model of 

micro-cracked bodies to describe the relation between a 

macro-crack and a number of micro-cracks. 

For modeling crack nucleation Bellec and Dolbow [14] 

focused on the particular case where the extent of the 

crack approaches the support size of the nodal shape 
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functions.  For the resolution of complex crack patterns 

Remmers et al. [15] analyzed the prospect of defining 

interrelated segments at arbitrary locations and in 

arbitrary directions. There by it will allow taking 

decision about the crack patterns including crack 

nucleation and other complex cracks, which are observed 

during the growth and coalescence. 

 

2.2 Holes and Inclusion 
Sukumar et al. [16] exposed a method to model arbitrary 

holes and material interfaces without the need of massing 

internal boundaries in two-dimensional linear 

elastostatics. For the treatment of holes, material 

inclusions and cracks Legrain et al. [17] analyzed the 

stability of incompressible formulations unified with 

X-FEM. Sukumar and al.[18] applied the X-FEM to 

understand the toughening mechanisms in 

polycrystalline materials such as ceramics. They focused 

on the micro-structural effects in the brittle fracture to 

construct a two-dimensional numerical model. 

 

2.3 Graded Materials  
Dolbow and Nadeau [19] raised some essential issues 

pertaining to the application of effective properties for 

the failure analysis in the micro-structured materials. 

These fundamental theoretical and numerical issues are 

concerned with the functionally graded materials FGMs. 

Numerous methods for the computation of various stress 

intensity factors in functionally graded materials FGMs 

are described. A new interaction energy integral method 

was presented by Dolbow and Gosz [20] for the 

calculation of mixed-mode stress intensity factors at the 

tips of arbitrarily oriented FGMs.For the simplified 

calculation of the various stress intensity factors in 

FGMs Menouillard et al. [21] presented a general 

method to solve that. Comi and Stefano Mariani [22] 

developed an extended finite element simulation of 

quasi-brittle fracture and an ad hoc formulation. The 

exposed formula was utilized to track the crack 

propagation in the graded medium.    

 

2.4 Material interfaces 
Belytschko [23] proposed a simplified method with 

implicit functions to define a solid object having material 

interfaces, sliding surfaces and cracks on the outside 

surface and in any inner surfaces by structured finite 

elements. In the two-dimensional elastostatic system 

Nagashima et al. [24] studied the bi-material interface 

cracks problem. They applied asymptotic solution of a 

homogeneous (not interface) crack to enrich the crack tip 

nodes, and adopted a fourth order Gauss integration for a 

4-node isoparametric element with enriched nodes.Liu et 

al.[25] improved the accuracy of the crack-tip 

displacement field and determined mixed mode stress 

intensity factors (SIFs) directly by taking into account 

higher order terms of the asymptotic crack-tip 

displacement field with the help of X-FEM for 

homogeneous materials as well as for bi-materials. 

Sukumar et al.[26] proposed a partition of unity 

enrichment techniques for bi-material interface cracks. 

The functions for the crack-tip enrichment are selected 

by the span of asymptotic displacement fields for an 

interfacial crack. The stress intensity factors were 

numerically determined by the domain form of the 

interaction integral in the bi-material interfacial cracks. 

Hettich and Ramm [27] extend the X-FEM to 

constructed a mechanical modeling of material interfaces 

and interfacial cracks.  

     Asadpoure et al. [28,29], and Asadpoure and 

Mohammadi [30] developed enrichment functions for 

X-FEM analysis of crack in orthotropic media. They 

proposed three independent sets of orthotropic 

enrichment functions in the three planes/axes of 

symmetry. Further, Piva et al. [31] studied the 

elastodynamic problems with the orthotropic crack tip 

solutions. Yan and Park [32] elucidated a study for the 

simulation of crack growth in layered composite 

structures by the X-FEM. Through the study they 

analyzed the capability of X-FEM to predict the crack 

path in near-interfacial fracture.  

 

2.5 Crack cohesive 
     To investigate fracture of concrete materials Wells 

and Sluys [33] unified the X-FEM with the cohesive 

zone model. Compared with the experiment they found 

excellent mixed-mode crack prediction. Moes and 

Belyschco [34] applied the X-FEM to predict the crack 

growth and its performance where a cohesive law was 

involved on the crack faces.  Zi and Belyschco [35] 

exposed a new enrichment technique for the treatment of 

curved cracks with higher order enrichments. In 

quasi-brittle materials Mariani and Perego [36] proposed 

a simulation technique to model the quasi-static cohesive 

bi-dimensional crack propagation. 

     Xiao et al. [37] proposed an incremental-secant 

modulus iteration scheme and stress recovery described 

by cohesive crack models to simulate the cracking 

process in quasi-brittle materials. The softening law of 

the cohesive crack models is composed of linear 

segments. In brittle and quasi-brittle solids Meschke and 

Dumstor [38] elucidated a variational X-FEM to track 

the cohesion less and cohesive cracks.  

 

2.6 Contact and Friction 
     Dolbow et al. [40] exposed three different interfacial 

constitutive laws as a technique for the finite element 

modeling of fracture in 2D crack growth with frictional 

contact. The developed laws are perfect contact and 

unilateral contact with or without friction. Vitali and 

Benson [41] demonstrated that the X-FEM for contact in 

Multi-Material Arbitrary Lagrangian–Eulerian 

(MMALE) formulations produce better results than the 

technique with the mixture theories. And their technique 

also agree with the Lagrangian solution. Vitali and 

Benson [42] extend their investigation to friction and 

enriched the accuracy of their previous study. Khoei and 

Nikbakht [43,44] enriched the classical finite element 

approximation by applying additional terms to simulate 

the frictional behavior of contact between two bodies. 

Ribeaucourt et al. [45] applied X-FEM /LATIN method 

to simulate the fatigue frictional contact crack 

propagation.  

     Borja [46] described the assumed enhanced strain 

(AES) and the X-FEM for simulating the frictional crack 
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propagation.  For the frictional contacts Boucard et al. 

[47] exposed a multi scale strategy for the structural 

optimization of geometric discontinuities. In [48] they 

proposed a new crack tip element for the phantom-node 

method with arbitrary cohesive cracks. Liu and Borja 

[49] applied X-FEM to present a Standard Coulomb 

plasticity model for predicting the frictional crack 

propagation on the surface of discontinuity.  

 

3. X-FEM CONCEPTS 
3.1. Crack-tip enrichment 
     The X-FEM and the generalized FEM [50–53] are 

closely related to each other as they both belonging to the 

class of partition of unity. In X-FEM the fundamental 

characteristics is that the addition of discontinuous 

enrichment functions by using the partition of unity to 

the finite element approximation. 

 

                                                                                      (1)                                                               

Where polar coordinate system is (r, θ) at the crack 

tip𝑁𝑖(𝑥)are the standard finite element shape functions. 

𝑎𝑗𝑖  is enrichment coefficient related to nodes and the 

number of coefficients ne(i) is for node I. ne(i) is four all 

the nodes around crack tips and zero at all other nodes. 𝐹𝑗 

(r, θ) are the crack-tip enrichment functions in isotropic 

elasticity and they are found from the asymptotic 

displacement fields: 

                                                                                 (2) 

In the above equation the first function is discontinuous 

across the crack and represents the discontinuity near the 

tip. The remaining three functions in the equation are for 

assessing accurate results with relatively coarse meshes 

(Fig. 1). 

 

3.2 Heaviside function 
The Heaviside jump function is a discontinuous function 

across the crack surface. It have constant value for each 

side of the crack and they are +1 on one side and -1 on the 

other. After unified with the jump function, the final 

approximation will be changed to the following formula 

 

                                                                                      (3) 

 

Where, 𝑁𝑖is the shape function for node i, I is the set of 

all nodes of the domain, J is the set of nodes whose shape 

function support is cut by a crack, K is the set of nodes 

whose shape function support with crack front,𝑢𝑖are the 

classical degrees of freedom or displacement for node 

i,𝑏𝑗account for the jump in the displacement field across 

the crack at node j. It represents opening of the crack if 

the crack is aligned with the mesh, H(x) is the Heaviside 

function, 𝐶𝑘
𝑙 are the additional degrees of freedom 

associated with the crack-tip enrichment functions 𝐹1,𝐹1 

is an enrichment which corresponds to the four 

asymptotic functions in the development expansion of 

the crack-tip displacement field in a linear elastic solid 

(Fig. 2). 

 

3.3 Numerical integration 
The numerical integration of X-FEM function faces two 

complications: the singularity at the crack tip and the 

discontinuity along the crack. The cut elements are 

generally integrated by partitioning them into standard 

sub-elements. Gauss quadrature rule must be applied for 

better results in the sub-elements. A set of sub-triangles 

was formed by dividing each side of a cut element into 

triangles in the earlier investigations. Some authors 

implemented slightly different approach to form a set of 

sub-quadrilaterals by dividing the cut elements (Fig. 3). 

The numerical integration procedure to partition cut 

elements by the crack is as follows: 

1. Partition of cut elements to form the Delaunay 

triangulation to get the sub-elements. 

2. The coordinates and weights of Gauss points are 

computed and then converted into the parent coordinate 

system for each sub-elements of the original element. 

 
Fig.1: Branch functions for discontinuities in: (a) the 

function; and (b) its derivative [9]. 

 

 
Fig.2: A strategy of enrichment [19]. 

 

     Ventura [54] discussed the eradication of quadrature 

sub cells for discontinuity functions in the X-FEM. 

During the investigation, he exposed the application of 

standard Gauss quadrature in the elements with the 

discontinuity without splitting the elements in sub-cells 

or to presenting any additional approximation. 

 

,),()()(
)(

11













 



ine

j

jjii

n

i

i rFauxNxu 

  





 sin
2

cos;sin
2

,
2

cos;
2

sin),(
4

1 































 rSinrrrrFj j

     
















 



4

1

22

2

4

1

11

1

iu
l

l

l

k

Kk

k

l

l

l

k

Kk

kj

Jj

j

Ii

i xFCNxFCNxHNbNU



 

© ICMERE2015 

3.4 Level set method 
The level set method (LSM) is a conceptual framework 

for using level sets as a tool for modeling the motion of 

interfaces. This numerical scheme is developed by Osher 

and Sethian [55].The principle of the method is to 

numerical analysis of an interface by the level set 

function (zero of a function) and Hamilton–Jacobi 

equations,where the function is updated with the 

equation considering the speed of the interface in the 

direction normal to this interface.   

 
Fig.3: Partitioning into standard sub-elements [19]. 

 

The significant advantage of coupling LSM with the 

X-FEM is that the LSM makes it very easy to locate 

crack and crack tips location. For the growth of the crack, 

X-FEM compute the stress and displacement fields. 

Stolarska et al.[56] presented the first algorithm coupling 

the LSM with X-FEM to solve the crack growth in two 

dimensions. A crack is described by two level sets: 

(1) a normal level set, ψ(x), which the signed 

distance to the crack surface, 

(2) a tangent level set ϕ(x), which is the signed 

distance to the plane including the crack front 

and perpendicular to the crack surface. 

In a given element,𝜓𝑚𝑖𝑛   and𝜓𝑚𝑎𝑥, respectively, be the 

minimum and maximum nodal values of ψ on the nodes 

of that element. Similarly, let, 𝜙𝑚𝑖𝑛 and 𝜙𝑚𝑎𝑥 , 

respectively be the minimum and maximum nodal values 

of ϕ on the nodes of an element: 

–If ϕ< 0 and, 𝜓𝑚𝑖𝑛𝜓𝑚𝑎𝑥≤0, then the crack cuts through 

the element and the nodes of the element are to be 

enriched with H(x). 

– If in that element𝜙𝑚𝑖𝑛𝜙𝑚𝑎𝑥≤ 0 and𝜓𝑚𝑖𝑛𝜓𝑚𝑎𝑥≤ 0, then 

the tip lies within that element, and its nodes are to be 

enriched Fi(r,θ). 

At point x, Stolarska et al. [56] presented the radius from 

the crack tip and the angle of deviation from the tangent 

to the crack tip: 

                                       And                                         (4) 

 

A particular level set method Fast Marching Method 

(FMM) [57] in association with X-FEM was also applied 

to simulate planar three-dimensional fatigue of crack 

growth. This coupling was applied by Sukumar et al.[58] 

for modeling simple crack growth andChopp and 

Sukumar [59] have studied the fatigue crack propagation 

of multiple coplanar cracks. In [60], Sukumar et al. 

presented the non-planar three-dimensional crack growth 

simulations by a unified process of X-FEM and FMM. 

 
Fig.4: Definition of theJ integral around a crack. 

 
Fig.5: Elements selected about the crack tip for 

calculation of the interaction integral [7] 

 

3.6Interaction integral 
The domain forms of the interaction integrals are 

employed to calculate the stress intensity factors. 

According to figure 4, the J-integral can be defined as: 

 

                                                                                      (5) 

 

The contour integral in equation (5) is not in a suitable 

form for finite element calculations. Moes et al. [7] alter 

the integral by multiplying the integrand by a sufficiently 

smooth weighting function q(x) into an equivalent 

domain form. The weighting function q(x) on an open set 

with crack tip containing the value of unity and vanishes 

on an outer prescribed contour𝐶𝑂.  

 

                                                                                      (6) 

 

 

     In the equation, the domain A is set from the 

collection of elements about the crack tip. The quantity 

ℎ𝑙𝑜𝑐𝑎𝑙  is designated as the characteristic length of an 

element touched by the crack tip. This quantity is 

calculated by the square root of the element area for 

two-dimensional analysis. Then the domain A contains 

all elements which have a node within a ball of radius 𝑟𝑑 

about the crack tip (Figs. 5 and 6).  
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Fig.6. Weight function q on the elements [7]. 

 

4. CONCLUSION 
The major concepts and an overall recent progress of the 

X-FEM in the crack growth modeling analysis have been 

reviewed in this article. It exposes the essential stages 

and numerical modeling processes carried out by the 

finite community element with respect to the fracture 

mechanics. To simulate and analysis the complex 

material fracture mechanics, the review points out the 

potentiality of the X-FEM. The method makes it possible 

to predict the crack growth independently of the mesh in 

a cracked domain. This is the major advantage of X-FEM 

over the conventional methods where remeshing and 

interpolation is necessary at the each stage of crack 

computation, which can be sources of instabilities. 

     When X-FEM is combine with level sets, the entire 

representation of the feature in the complex domains, can 

be constructed accurately in terms of nodal values at the 

nodes of the original mesh, which is difficult to solve 

using standard FEM. Furthermore, user can benefit from 

the many built-in features of such code used in the 

sub-structuring approach X-FEM/FEM software.  
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